
The Late Session
by John O’Connell

Those of you using Delphi 2.0
might have noticed the

UpdateSQL and Session components
on the Data Access page of the com-
ponent palette. The UpdateSQL com-
ponent is new but the Session
object is part of Delphi 1.0 and has
existed since the days when
Borland’s database connectivity
was known as the Open Database
API (ODAPI), before the Borland
Database Engine (BDE) arrived on
the scene. Only now has Session
been promoted to the component
palette, but for what good reason?
Well it’s all to do with another new
feature of Delphi 2.0 (and the
Win32 architecture): the thread or
TThread as known by Delphi.

BDE Objects
So what exactly is a session? The
TSession object which encapsu-
lates a BDE session provides a
number of methods which return
the names of aliases and data-
bases, but there’s more to sessions
than just that. Let’s look at the BDE
architecture in a little depth. The
BDE is object-based in design and
each object is defined by its prop-
erties which are set when the
object is created. BDE objects are
created by applications using
IDAPI (the Integrated Database
API, used to call BDE services). A
BDE application will make use of
the following BDE objects:
➣ System
➣ Clients
➣ Sessions
➣ Database drivers
➣ Databases
➣ Cursors
➣ Query statements
A single System object controls all
IDAPI resources used by applica-
tions running on the same machine
and is created by the first applica-
tion to initialise the BDE. All sub-
sequently loaded BDE client
applications will then use the same
IDAPI System object. A single Client
per application is created when
that application initialises IDAPI.

The Client controls all IDAPI
resources used by that Client. The
language used by the Client for
error messages can be specified.
The session basically provides the
means to isolate database access
operations without having to start
another instance of the applica-
tion. A default session is always
created by the Client which can
handle multiple sessions. Each ses-
sion acts as a container for other
database access objects (created
at run-time) such as databases,
cursors (tables) and query state-
ments. Database drivers provide
the connectivity layer between
IDAPI and a physical database
table. There are drivers for
Paradox tables, dBase tables and
the various SQL databases. Drivers
provide information about their
capabilities, such as whether the
driver supports transactions or
soft deletes, for example. A driver
may also provide international
language support used for the dis-
play of records in a database table.
Databases are a collection of re-
lated tables and an application
must successfully open a database
before its tables can be accessed.
Aliases can be defined to identify a
particular database. For Paradox
and dBase databases (which are
essentially just a directory) no
alias is required, but SQL data-
bases must be identified by an
alias. Aliases and the properties for
IDAPI objects are set interactively
using the BDE Configuration Utility
which stores these properties in
the IDAPI configuration file. The
System’s properties in particular
get a whole page to themselves!

IDAPI Objects And The VCL
As you’d expect, the data-access
parts of the VCL encapsulate IDAPI
objects, most of which are quite
obvious (TDatabase, TTable etc),
but some are not so obvious. I’ve
already said that the TSession ob-
ject encapsulates an IDAPI session,
but where do the System, Client

and drivers come into it? The
System is never encapsulated and
doesn’t need to be, because it’s just
there and controls the IDAPI cli-
ents on one system. The same goes
for the Client which is created (and
may in turn create the System if no
other clients exist) when the
Session object (declared in
DB.PAS) of type TSession is cre-
ated. Drivers are not encapsulated
within the VCL.

Sessions And Locks
I’ve already mentioned that a ses-
sion is a container for databases
and tables – therefore a session
controls the locks on the databases
and tables contained within that
session. Let’s investigate the rela-
tionship between sessions and
locks with a very simple example.

The Delphi 2.0 application
SESSDEM1 (included on the disk)
contains two separate TTable
objects, Table1 and Table2, both
opened on the same database and
table and both positioned on the
same record. Now Table1 edits the
record and a moment later Table2
tries to deletes the same record
which raises an exception saying
that the record is locked in the
same session. Table2 then tries to
delete the record and succeeds!
That wasn’t expected! Now Table1
tries to post the changes to the now
non-existent record, obviously
fails and has to cancel the changes.
But how come Table2 was allowed
to delete a locked record? Well,
because Table1 and Table2 were
opened in the same session,
Table1’s record lock didn’t prevent
the record from being deleted as
expected, because the default
session owned the lock and could
ignore it.

In a multi-threaded application
the above situation could cause
data-integrity problems when
more than one thread accesses the
same table. It’s here that using the
Session component to create
another session saves the day. If

August 1996 The Delphi Magazine 21

Table1 or Table2 had been opened
in a separate session, Table2 would
not have been able to delete the
record locked by Table1: the at-
tempt to delete the record would
have raised an exception saying
that the record is locked by
another session. Try it for yourself
with SESSDEM2 which uses a sepa-
rate TSession called SessOne with
which Table2 is associated.

With TSession comes a new
Session property for the TTable,
TQuery and TStoredProc which gives
the wrong impression that tables
and queries are directly associated
with a session which is not the case
– only databases are directly asso-
ciated with the session and so
TDatabase gets a Session property.
The Session property for TTable
and similar components actually
refers to the session that owns the
temporary TDatabase created at
runtime for a TTable, TQuery or
TStoredProc not connected to a
persistent TDatabase object. How-
ever, from now on I’ll be referring
to TTables as if they were directly
associated with sessions.

Delphi 2’s TSession
So now we know how important the
TSession can be, especially in a
multi-threaded database applica-
tion, let’s examine just a few of its
properties and methods. The
Active property, when set to True,
opens the TSession which allows
any associated TDatabase (and
hence any TDataset descendants
owned by that TDatabase) to be
opened. Setting the Active prop-
erty to False closes down all owned
TDatabases which in turn closes
down all TDatasets – a convenient
way of closing down many open
tables in your application with a
single line of code. An alternative
to setting the Active property is to
use the TSession Open and Close
methods. Interestingly, opening a
dataset associated with an inactive
TSession opens that TSession.

The SessionName property is a
unique identifier for the TSession
and is used by the Session property
of the other data access compo-
nents. The name of the default ses-
sion (the TSession named Session,
declared in DB.PAS) created when

the application initialises is called,
strangely enough, Default, and
should never be explicitly closed.
The Databases property is an array
of TDatabase components owned by
the TSession. The function of the
DatabaseCount property is pretty
obvious.

The NetFileDir and PrivateDir
properties relate to table and
record locking. NetFileDir speci-
fies the directory containing the
shared network control file
PDOXUSRS.NET which tracks all
BDE client applications sharing
Paradox tables on a single network.
The network control file directory
must be the same for all clients
accessing the same tables other-
wise table/record locking conflicts
will occur and data integrity might
be compromised. The file
PDOXUSRS.LCK is created in any
directory containing Paradox
tables that are being accessed, and
contains information about locks
for each table in that directory.
Every BDE client examines this file
before attempting to place a lock
on a table or record.

PrivateDir specifies the private
directory for the session which
contains all temporary files and
tables created by the BDE (when
performing local queries, restruc-
turing tables, etc) for that session.
The private directory for a session
must be just that, private: any
attempt to set a session’s private
directory to that of another session
is not permitted by the BDE and
will cause an error. The file
PARADOX.LCK marks a directory
as private. If another BDE client
application tries to access Paradox
tables in that directory it will fail. A
PARADOX.LCK file is also created
(alongside PDOXUSRS.LCK) in a
shared directory containing tables
being accessed by BDE clients.
This stops a session making a
shared directory its private direc-
tory. The file PDOXUSRS.LCK is
also created in the private direc-
tory and contains information
about locks owned by the session
that uses that private directory.

The KeepConnections property
specifies the default value of the
KeepConnections property for a
temporary TDatabase created at

run-time and owned by that
session. If KeepConnections is False
and the temporary TDatabase has
no tables open, the database
connection will be dropped and
the database closed, but if
KeepConnections is True then the
connection will persist regardless
of whether any tables are open.
This reduces network traffic
between client and server when
tables in a remote database are fre-
quently opened and closed. The
KeepConnections property of a
persistent TDatabase overrides the
KeepConnections property of the
owning TSession, but making a call
to TSession.DropConnections will
close all active database connec-
tions regardless of the value of
TDatabase.KeepConnections.

The TSession also provides
two methods (OpenDatabase and
CloseDatabase) to open and close
each of its TDatabases and also
provides methods (AddPassword,
RemovePassword and RemoveAllPass-
words) for controlling a password
list used by password-protected
Paradox tables. Adding the correct
password to the password list will
prevent a password dialog from
popping up when a password
protected Paradox table is opened.
Other TSession methods retrieve
information about: BDE aliases and
database names (GetAliasNames
and GetDatabaseNames), alias driv-
ers and parameters (GetAlias-
DriverName and GetAliasParams),
BDE driver names and their pa-
rameters (GetDriverNames and
GetDriverParams), table names and
stored procedure names for a
specified database (GetTableNames
and GetStoredProcNames). All poten-
tially useful information which is
interactively configured for each
alias and database driver by using
the BDE Configuration Utility.

But what’s the difference
between the information retrieved
by GetAliasNames and GetDat-
abaseNames? The difference is that
GetAliasNames returns all perma-
nent BDE aliases (created with the
BDE Configuration Utility) whereas
GetDatabaseNames returns all BDE
aliases plus any application
specific aliases which are defined
by the DatabaseName property of a

22 The Delphi Magazine Issue 12

persistent TDatabase existing only
for the running application’s
lifetime.

It’s all very well having multiple
sessions floating about in a Delphi
2.0 application but how can they be
controlled? How can the applica-
tion know what sessions have been
created and how many of them are
there? That’s where the Session-
List object comes in.

A TSessionList is a list of ses-
sions owned by the IDAPI Client
and is maintained by the TSession
class. You can use TSessionList
properties and methods to find out
how many sessions exist (using the
Count property) and what their
names are (using GetSessionNames).
You can obtain a pointer to a spe-
cific session in the list using the
List or Sessions properties. To
open a particular session use the
OpenSession method which takes a
session name as its only parame-
ter. If the session specified by this
parameter exists then it is opened,
otherwise a new TSession instance
is created and added to Session-
List. Never use TSession.Create to
create a new session, always use
Sessions.OpenSession. Using TSes-
sion.Create will create another
default session, which will in turn
attempt to create a new client
object, which will fail.

I’ve stated that Delphi 2.0 pro-
vides multiple BDE session han-
dling to get around the potential
data integrity problems that could
arise in a multi-threaded database
application. Delphi 1.0 doesn’t
support multi-threading and so
doesn’t need support for multiple
sessions, which is the reason why
Borland didn’t provide such sup-
port. The Session object in Delphi
1.0 encapsulates the default BDE
session. Attempting to create a
new instance of TSession... well,
you know the story. There is no
such thing as SessionLists in
Delphi 1.0, although the TSession
properties and methods are more
or less the same (apart from
SessionName and Active) in both
versions of Delphi.

It is possible to write a pseudo-
multi-threading database applica-
tion with Delphi 1.0 by judicious
use of the Application.Process-

Messages method. In such cases
support for multiple sessions is
desirable in Delphi 1.0, so what can
be done to remedy the situation?

Multiple Sessions In Delphi 1
The only way to implement multi-
ple sessions support for Delphi 1.0
is to make direct calls to the BDE.
The BDE function calls relating to
session creation and control are
DbiStartSession which starts a new
session, DbiSetCurrSession which
sets the active session and
DbiCloseSession which closes the
session.

DbiStartSession takes three pa-
rameters: a pointer to the session
name, a pointer to the session han-
dle used to identify the session and
a pointer to the network control file
directory. In addition to creating
the new session, DbiOpenSession
makes the new session the current
session. The only parameter that
we must specify is the session
handle, the others can be passed
as nil.

DbiSetCurrSession takes a ses-
sion handle as its one parameter
and activates the specified session.
Usefully, if the session handle pa-
rameter is passed as nil the default
session is made current.

DbiCloseSession takes a session
handle as a parameter and closes
the session. If the session being
closed is the current non-default
session then the default session
becomes current. Closing a session
will free all BDE objects owned by
that session so make sure you
close all tables and databases
owned by the session before clos-
ing it otherwise you’ll be asking for
trouble.

Armed with these function calls
we can open new sessions, switch

between them and close them –
everything we need.

But before continuing, it’s impor-
tant to clarify the terminology used
when talking about opening and
closing a session. In IDAPI-speak,
opening a session actually creates
a new session every time, closing a
session will free that session and
all objects owned by it (databases
and hence tables). If you fail to
close all TDatabases and TTables
before closing a session created
using DbiOpenSession, you’ll end up
with a data-aware component
whose IDAPI handle has been
freed, thus effectively disconnect-
ing the component from its under-
lying IDAPI object, be it a database
handle or table cursor handle.
Needless to say, you’ll encounter
lots of problems if this occurs, so
be careful.

So, after we’ve opened a new
session, how can we associate a
TDatabase or TTable with it? Very
simple really, by creating and
opening a TDatabase or TTable with
the new session active, that
TDatabase will be owned by the new
session. Any other TDatabases or
TTables created and opened with
the new session active will also
belong to that session. We can then
switch to the default session know-
ing that any TDatabases and TTables
associated with our new session be
isolated from any TDatabase or
TTable created and opened during
the default session. I’ve set up a
simple little Delphi demo applica-
tion called SESSDEM3 to try out
what I’ve outlined here (the code is
on the disk of course).

Listing 1 shows the all important
code snippet which creates the
TDatabase at run-time that’s owned
by the new session.

procedure TForm1.FormCreate(Sender: TObject);
var NetFileDir: array[0..255] of char;
begin
 Check(DbiStartSession(nil, HSession, StrPCopy(NetFileDir,
Session.NetFileDir)));
 ADatabase := TDatabase.Create(Self); {now owned by HSess}
 ADatabase.AliasName := ’DBDEMOS’;
 ADatabase.Databasename := ’AltSess’;
 ADatabase.Open;
 ATable.Open;
 Check(DbiSetCurrSession(nil)); {make the default session active}
end;

➤ Listing 1

August 1996 The Delphi Magazine 23

I should mention the Check
procedure which is defined in the
DB.PAS unit and simply raises a
database engine exception if the
return code of the BDE function
passed as a parameter indicates a
failure. Borland use it in the VCL so
it’s good enough for me. The
HSession variable is of type HDBISes
which is defined in the unit
DbiTypes which you’ll need to
include in the uses statement of the
form’s unit. You’ll also need to use
the DbiProcs unit which contains
definitions for the various Dbi...
functions used in the form’s unit.
Try out the application for yourself
by opening the new session/data-
base, edit any record in the lower
grid and then try to delete the same
record from the upper grid. An
exception is raised and the delete
fails. Back in the Delphi IDE, edit
the FormCreate handler and com-
ment out the call to DbiStartSes-
sion, run the application again and
repeat the edit and delete as
before. The locked record gets
deleted.

So now we can create and open
a TDatabase that’s owned by a ses-
sion other than the default session
and therefore any tables opened
from that TDatabase will have their
locks isolated by the non-default
session. If we wanted to add an-
other TDatabase that is owned by
the non-default session, we’d just
call DbiSetCurrSession(HSess), cre-
ate and open the TDatabase and
then call DbiSetCurSession(nil) to
switch back the default session.

However, if you have a look at
the TDatabase.Open method in
DB.PAS, you’ll notice that the life-
time of the database IDAPI object
(encapsulated in a TDatabase)
starts when the TDatabase is
opened and ends when the
TDatabase is closed. Therefore
we’re only required to open a
TDatabase or TTable in the context
of a certain session in order for that
session to own the database or
table and so the required code
reduces to that shown in Listing 2.
Also, we’re not forced to create the
TDatabase at run-time. Don’t forget
to close any new sessions (by using
DbiCloseSession(HSession)) when
the form is destroyed.

How about creating a descen-
dant of TDatabase to implement
multiple sessions? We could do
this, but it would mean that each
instance of this descendant would
have its own individual private
session, although if the sole pur-
pose of using multiple sessions is
to isolate table and record locks
from the default session then
there’s no problem. Our TDatabase
descendant, called TDatabaseEx,
will need to override the Open and
Close methods, as is shown in
Listing 3.

This is all well and good but in
fact we can’t subclass TDatabase in
the way we want simply because its
Open and Close methods are static
and so can’t be overridden. You
might think it’s a simple matter of
just making TDatabase.Open and
TDatabase.Close virtual in
\DELPHI\SOURCE\VCL\DB.PAS, rebuild-
ing and copying the unit to
\DELPHI\LIB. But when you come to
rebuild COMPLIB.DCL, Delphi will
complain that a particular unit is
out of date, which basically means
that some units in \DELPHI\LIB

which have not been included in
\DELPHI\SOURCE\VCL depend on

DB.DCU and the source code for
those units is not supplied. So
we’re stuck.

Summing Up
You may wonder why I’ve pre-
sented a solution that cannot work
and of course can never have been
tested! Well if Borland ever decide
to issue an updated version of the
VCL source and \DELPHI\LIB files
where TDatabase.Open and
TDatabase.Close are declared as
virtual then the solution
presented will be tested and
should work. However, all isn’t lost
because we can still fall back on the
first method (in SESSDEM3) of
implementing multiple sessions in
Delphi 1.0 which is quite adequate.

In my next article I’ll be looking
at calling the BDE and how to use it
to extend the capabilities of
Delphi’s data-access.

John O’Connell is a freelance
software consultant/developer
specialising in Delphi and data-
base application development. He
can be reached via email on
73064.74@compuserve.com

procedure TDatabaseEx.Open;
var
 NetFileDir: array[0..255] of char;
begin
 if Handle = nil then begin
 Check(DbiSetCurrSession(FSession));
 inherited Open;
 Check(DbiSetCurrSession(nil));
 end;
end;

procedure TDatabaseEx.Close;
begin
 if Handle <> nil then begin
 Check(DbiSetCurrSession(FSession));
 inherited Close;
 end
end;

➤ Listing 3

procedure TForm1.FormCreate(Sender: TObject);
var
 NetFileDir: array[0..255] of char;
begin
 Check(DbiStartSession(
 nil, HSession, StrPCopy(NetFileDir, Session.NetFileDir)));
 ADatabase.Open;
 Check(DbiSetCurrSession(nil));
 ATable.DatabaseName := ’AltSession’;
 ATable.Open;
end;

➤ Listing 2

24 The Delphi Magazine Issue 12

	BDE Objects
	IDAPI Objects And The VCL
	Sessions And Locks
	Delphi 2's TSession
	Multiple Sessions in Delphi 1
	Summing Up

